1,504 research outputs found

    Seasonal and interannual variability of North American isoprene emissions as determined by formaldehyde column measurements from space

    Get PDF
    Formaldehyde (HCHO) columns measured from space by solar UV backscatter allow mapping of reactive hydrocarbon emissions. The principal contributor to these emissions during the growing season is the biogenic hydrocarbon isoprene, which is of great importance for driving regional and global tropospheric chemistry. We present seven years (1995-2001) of HCHO column data for North America from the Global Ozone Monitoring Experiment (GOME), and show that the general seasonal and interannual variability of these data is consistent with knowledge of isoprene emission. There are some significant regional discrepancies with the seasonal patterns predicted from current isoprene emission models, and we suggest that these may reflect flaws in the models. The interannual variability of HCHO columns observed by GOME appears to follow the interannual variability of surface temperature, as expected from current isoprene emission models

    Investigating rare pathogenic/likely pathogenic exonic variation in bipolar disorder

    Get PDF
    Bipolar disorder (BD) is a serious mental illness with substantial common variant heritability. However, the role of rare coding variation in BD is not well established. We examined the protein-coding (exonic) sequences of 3,987 unrelated individuals with BD and 5,322 controls of predominantly European ancestry across four cohorts from the Bipolar Sequencing Consortium (BSC). We assessed the burden of rare, protein-altering, single nucleotide variants classified as pathogenic or likely pathogenic (P-LP) both exome-wide and within several groups of genes with phenotypic or biologic plausibility in BD. While we observed an increased burden of rare coding P-LP variants within 165 genes identified as BD GWAS regions in 3,987 BD cases (meta-analysis OR = 1.9, 95% CI = 1.3-2.8, one-sided p = 6.0 × 1

    Near-infrared follow-up to the May 2008 activation of SGR 1627-41

    Full text link
    On 28 May 2008, the Swift satellite detected the first reactivation of SGR 1627-41 since its discovery in 1998. Following this event we began an observing campaign in near infrared wavelengths to search for a possible counterpart inside the error circle of this SGR, which is expected to show flaring activity simultaneous to the high energy flares or at least some variability as compared to the quiescent state. For the follow-up we used the 0.6m REM robotic telescope at La Silla Observatory, which allowed a fast response within 24 hours and, through director discretionary time, the 8.2m Very Large Telescope at Paranal Observatory. There, we observed with NACO to produce high angular resolution imaging with the aid of adaptive optics. These observations represent the fastest near infrared observations after an activation of this SGR and the deepest and highest spatial resolution observations of the Chandra error circle. 5 sources are detected in the immediate vicinity of the most precise X-ray localisation of this source. For 4 of them we do not detect variability, although the X-ray counterpart experimented a significant decay during our observation period. The 5th source is only detected in one epoch, where we have the best image quality, so no variability constrains can be imposed and remains as the only plausible counterpart. We can impose a limit of Ks > 21.6 magnitudes to any other counterpart candidate one week after the onset of the activity. Our adaptive optics imaging, with a resolution of 0.2" provides a reference frame for subsequent studies of future periods of activity.Comment: Accepted for publication in A&

    Stochastic evolution equations driven by Liouville fractional Brownian motion

    Get PDF
    Let H be a Hilbert space and E a Banach space. We set up a theory of stochastic integration of L(H,E)-valued functions with respect to H-cylindrical Liouville fractional Brownian motions (fBm) with arbitrary Hurst parameter in the interval (0,1). For Hurst parameters in (0,1/2) we show that a function F:(0,T)\to L(H,E) is stochastically integrable with respect to an H-cylindrical Liouville fBm if and only if it is stochastically integrable with respect to an H-cylindrical fBm with the same Hurst parameter. As an application we show that second-order parabolic SPDEs on bounded domains in \mathbb{R}^d, driven by space-time noise which is white in space and Liouville fractional in time with Hurst parameter in (d/4,1) admit mild solution which are H\"older continuous both and space.Comment: To appear in Czech. Math.

    Unveiling Soft Gamma-Ray Repeaters with INTEGRAL

    Get PDF
    Thanks to INTEGRAL's long exposures of the Galactic Plane, the two brightest Soft Gamma-Ray Repeaters, SGR 1806-20 and SGR 1900+14, have been monitored and studied in detail for the first time at hard-X/soft gamma rays. This has produced a wealth of new scientific results, which we will review here. Since SGR 1806-20 was particularly active during the last two years, more than 300 short bursts have been observed with INTEGRAL. and their characteristics have been studied with unprecedented sensitivity in the 15-200 keV range. A hardness-intensity anticorrelation within the bursts has been discovered and the overall Number-Intensity distribution of the bursts has been determined. In addition, a particularly active state, during which ~100 bursts were emitted in ~10 minutes, has been observed on October 5 2004, indicating that the source activity was rapidly increasing. This eventually led to the Giant Flare of December 27th 2004, for which a possible soft gamma-ray (>80 keV) early afterglow has been detected. The deep observations allowed us to discover the persistent emission in hard X-rays (20-150 keV) from 1806-20 and 1900+14, the latter being in a quiescent state, and to directly compare the spectral characteristics of all Magnetars (two SGRs and three Anomalous X-ray Pulsars) detected with INTEGRAL.Comment: 8 pages, 7 figures, Presented at the conference "Isolated Neutron Stars: from the Surface to the Interior", London, UK, 24-28 April 200

    Short gamma-ray bursts from SGR giant flares and neutron star mergers: two populations are better than one

    Get PDF
    ‘The definitive version is available at www.blackwell-synergy.com.’ Copyright Blackwell Publishing. DOI: 10.1111/j.1365-2966.2009.14610.xThere is increasing evidence of a local population of short duration gamma-ray bursts (sGRB), but it remains to be seen whether this is a separate population to higher redshift bursts. Here we choose plausible luminosity functions (LFs) for both neutron star binary mergers and giant flares from soft gamma repeaters (SGR), and combined with theoretical and observed Galactic intrinsic rates we examine whether a single progenitor model can reproduce both the overall Burst and Transient Source Experiment (BATSE) sGRB number counts and a local population, or whether a dual progenitor population is required. Though there are large uncertainties in the intrinsic rates, we find that at least a bimodal LF consisting of lower and higher luminosity populations is required to reproduce both the overall BATSE sGRB number counts and a local burst distribution. Furthermore, the best-fitting parameters of the lower luminosity population agree well with the known properties of SGR giant flares, and the predicted numbers are sufficient to account for previous estimates of the local sGRB population.Peer reviewe

    Ice-Dammed Lake Drainage Evolution at Russell Glacier, West Greenland

    Get PDF
    KEY POINTS/HIGHLIGHTSTwo rapid ice-dammed lake drainage events gauged and ice dam geometry measured.A melt enlargement model is developed to examine the evolution of drainage mechanism(s).Lake temperature dominated conduit melt enlargement and we hypothesize a flotation trigger.Glaciological and hydraulic factors that control the timing and mechanisms of glacier lake outburst floods (GLOFs) remain poorly understood. This study used measurements of lake level at 15 min intervals and known lake bathymetry to calculate lake outflow during two GLOF events from the northern margin of Russell Glacier, west Greenland. We used measured ice surface elevation, interpolated subglacial topography and likely conduit geometry to inform a melt enlargement model of the outburst evolution. The model was tuned to best-fit the hydrograph rising limb and timing of peak discharge in both events; it achieved Mean Absolute Errors of <5%. About one third of the way through the rising limb, conduit melt enlargement became the dominant drainage mechanism. Lake water temperature, which strongly governed the enlargement rate, preconditioned the high peak discharge and short duration of these floods. We hypothesize that both GLOFs were triggered by ice dam flotation, and localized hydraulic jacking sustained most of their early-stage outflow, explaining the particularly rapid water egress in comparison to that recorded at other ice-marginal lakes. As ice overburden pressure relative to lake water hydraulic head diminished, flow became confined to a subglacial conduit. This study has emphasized the inter-play between ice dam thickness and lake level, drainage timing, lake water temperature and consequently rising stage lake outflow and flood evolution

    The Association between Supraphysiologic Arterial Oxygen Levels and Mortality in Critically Ill Patients. A Multicenter Observational Cohort Study.

    Get PDF
    Rationale: There is conflicting evidence on harm related to exposure to supraphysiologic PaO2 (hyperoxemia) in critically ill patients.Objectives: To examine the association between longitudinal exposure to hyperoxemia and mortality in patients admitted to ICUs in five United Kingdom university hospitals.Methods: A retrospective cohort of ICU admissions between January 31, 2014, and December 31, 2018, from the National Institute of Health Research Critical Care Health Informatics Collaborative was studied. Multivariable logistic regression modeled death in ICU by exposure to hyperoxemia.Measurements and Main Results: Subsets with oxygen exposure windows of 0 to 1, 0 to 3, 0 to 5, and 0 to 7 days were evaluated, capturing 19,515, 10,525, 6,360, and 4,296 patients, respectively. Hyperoxemia dose was defined as the area between the PaO2 time curve and a boundary of 13.3 kPa (100 mm Hg) divided by the hours of potential exposure (24, 72, 120, or 168 h). An association was found between exposure to hyperoxemia and ICU mortality for exposure windows of 0 to 1 days (odds ratio [OR], 1.15; 95% compatibility interval [CI], 0.95-1.38; P = 0.15), 0 to 3 days (OR 1.35; 95% CI, 1.04-1.74; P = 0.02), 0 to 5 days (OR, 1.5; 95% CI, 1.07-2.13; P = 0.02), and 0 to 7 days (OR, 1.74; 95% CI, 1.11-2.72; P = 0.02). However, a dose-response relationship was not observed. There was no evidence to support a differential effect between hyperoxemia and either a respiratory diagnosis or mechanical ventilation.Conclusions: An association between hyperoxemia and mortality was observed in our large, unselected multicenter cohort. The absence of a dose-response relationship weakens causal interpretation. Further experimental research is warranted to elucidate this important question

    X-ray emission from isolated neutron stars

    Full text link
    X-ray emission is a common feature of all varieties of isolated neutron stars (INS) and, thanks to the advent of sensitive instruments with good spectroscopic, timing, and imaging capabilities, X-ray observations have become an essential tool in the study of these objects. Non-thermal X-rays from young, energetic radio pulsars have been detected since the beginning of X-ray astronomy, and the long-sought thermal emission from cooling neutron star's surfaces can now be studied in detail in many pulsars spanning different ages, magnetic fields, and, possibly, surface compositions. In addition, other different manifestations of INS have been discovered with X-ray observations. These new classes of high-energy sources, comprising the nearby X-ray Dim Isolated Neutron Stars, the Central Compact Objects in supernova remnants, the Anomalous X-ray Pulsars, and the Soft Gamma-ray Repeaters, now add up to several tens of confirmed members, plus many candidates, and allow us to study a variety of phenomena unobservable in "standard'' radio pulsars.Comment: Chapter to be published in the book of proceedings of the 1st Sant Cugat Forum on Astrophysics, "ICREA Workshop on the high-energy emission from pulsars and their systems", held in April, 201
    • …
    corecore